

Digital Estate Management BIM and CAD Standards

Prepared by Beca Pty Ltd Prepared for Business Services

2024

Table of Contents

1.	Introduction	4
1.1.	Introduction to the Digital Estate	4
1.2.	Summary of Amendments to CAD and BIM Standards	4
1.3.	Background	4
1.4.	Project Applicability Matrix	4
1.5.	Definitions and Acronyms	5
2.	General Requirements	6
2.1.	Conditions of Compliance	6
2.2.	Drawing Transmittal Requirements	6
2.3.	File Naming Convention	6
3.	BIM Standards and Guidelines	7
3.1.	Design Software Compatibility and Versions	7
3.2.	BIM File Format Requirements	7
3.3.	BIM Model Delivery	7
3.4.	BIM Execution Plan Development and Implementation	7
3.5.	BIM Authoring Software for Major Projects	7
3.6.	BIM Model Coordination and Collaboration	8
3.7.	Level of Development (LOD) Guidelines for BIM Projects	8
3.8.	Revision Control, Version Management, and Data Exchange	8
3.9.	Geospatial and Coordinate Standards	8
3.10.	VBIS (Virtual Building Information System) Integration	8
4.	CAD Standards and Guidelines	10
4.1.	CAD File Format Requirements	.10
5.	Asset Information Requirements	11
5.1.	AIR Development and Implementation	.11
5.2.	Asset Data Delivery	.11
5.3.	Post-Project Responsibilities	.11
5.4.	Documentation and Reporting	.12
6.	Project Information Requirements	13
6.1.	Asset Register Deliverable	.15
7.	CAD Drawing and Model Production and Delivery	16
7.1.	Drawing and Model Production Guidelines:	.16
7.2.	Drawing and Model Coordination and Audits	.16
7.3.	Drawing and Model Submission Process	.16
7.4.	Integration of BIM in Projects	.16
8.	Collaboration and Communication	18
8.1.	Roles and Responsibilities	.18

8.2.	Data Security and Integrity	18		
8.3.	Training and Competency	18		
8.4.	Common Data Environment (CDE) Management	18		
9.	Survey Requirements	20		
9.2.	Underground Services	20		
9.3.	Landscape Features	21		
10.	Reality Capture and Delivery	21		
APPEN	IDIX A - DRAWINGS, AS-BUILTS & MANUALS - FORMAT & SUBMISSION	22		
APPEN	DIX B – LUNR SUBMISSION GUIDELINES	25		
APPEN	DIX C - LOD DEFINITIONS FOR BIM PROJECTS	26		
APPEN	DIX D – INDUSTRY STANDARDS	27		
APPENDIX E – FILE NAMING				
APPENDIX G - ASSET INFORMATION TEMPLATE				
APPENDIX H - UNIQUE ENTITY CODES - VBIS				
APPEN	IDIX I - UNDERGROUND SERVICES SURVEY INFORMATION	38		
APPENDIX J - UNDERGROUND SERVICES UNIQUE ENTITY CODES				
APPEN	APPENDIX K – REALITY CAPTURE AND DELIVERY GUIDELINES			

1. Introduction

1.1. Introduction to the Digital Estate

The Digital Estate is a comprehensive framework that underscores University of Melbourne's commitment to advancing the digital management of the physical assets, including building sand facilities. In alignment with industry best practices and standards such as ISO 19650 and the Victorian Digital Asset Strategy (VDAS), Digital Estate program lays out a strategic roadmap for the systematic transition towards the next generation of facilities management. This transition extends its reach to our CAD and BIM standards, reflecting our evolving approach to project delivery.

1.2. Summary of Amendments to CAD and BIM Standards

The following summarises the recent changes to the CAD and BIM Standards document. The University is incorporating principles of BIM into Project Delivery; hence the Standard is being renamed to BIM and CAD Standards.

1.3. Background

The purpose of this document is to provide clear and standardised guidelines for project teams involved in design, construction, and facilities management projects at the University of Melbourne. These guidelines encompass both CAD and BIM aspects to ensure that projects adhere to uniform practices, regardless of their scale or complexity.

In this document, the requirements for the AS BUILT drawings are outlined. The objective is to obtain a highquality uniform set of documents that can easily be uploaded into the University's online repository, LUNR.

These Standards should be read in conjunction with the UoM consultant agreement or building contract (when applicable).

BIM is becoming increasingly integral to the University's project lifecycle, enabling comprehensive digital representations of facilities.

1.4. Project Applicability Matrix

To ensure that the standards presented in this document applied appropriately, the Project Applicability Matrix, as outlined below, aids in determining the specific requirements applicable to each project.

	Low risk	Medium risk	High risk
Low cost	In development	In development	In development
Medium cost	In development	In development	In development
High cost	In development	In development	In development

1.5. Definitions and Acronyms

Term	Definition
CAD	Computer Aided Drafting.
AS-BUILT	Measured and revised drawings documenting the full extent of completed building works.
MGA	Map Grid Australian. MGA refers to the UTM (Universal Transverse Mercator) grid system used in Australia. The country is divided into a series of zones, each with its projection and coordinate system. Melbourne University is in Zone 55.
AHD	Australian Height Datum. AHD is focused on vertical measurements, ensuring that height measurements are standardized and can be compared across different locations
GDA	Geocentric Datum of Australia. GDA covers both horizontal (latitude and longitude) and vertical (ellipsoidal heights) measurements, providing a comprehensive framework for positioning in three dimensions.
DWG	Default AutoCAD drawing file format.
LAYER	Electronic drawing sheet within a drawing file upon which data can be drawn and manipulated. A layer can be turned on or off as required.
BIM	Building Information Modelling is a collaborative process that involves generating and managing digital representations of a facility's physical and functional characteristics.
LUNR	The University's online database is used for storing CAD files and related documents.
ISO19650	ISO 19650 is an international standard that focuses on managing information over the whole life cycle of a built asset using building information modelling (BIM). It provides guidelines and requirements for effective information management and collaboration in construction and infrastructure projects.
VBIS	VBIS tags provide an ontology for assets in the built environment. The VBIS tags comprise a four- level structure that provides unique alphabetic tags per type of asset.

2. General Requirements

2.1. Conditions of Compliance

All consultants and contractors engaged in university projects are expected to meet the specifications defined in the CAD and BIM Standards established by the Space Management Team, Business Services, University of Melbourne. These standards serve as a foundation for consistency, accuracy, and effective collaboration throughout the project's lifecycle.

The University's Space Management Team provides consultants and contractors with copies of Melbourne University Information files. Information files can be either in proprietary (e.g., dwg) or Open (e.g., pdf) formats.

Consultants and contractors are to use Melbourne University files for reference only and accepts no liability for their accuracy for purposes of building design and construction.

The consultants/contractors shall provide the Space Management Team with "As-Built" AutoCAD drawings. These drawings should accurately depict the final state of the constructed environment and should be submitted no later than four weeks after achieving practical completion.

The University of Melbourne's CAD and BIM standards establish consistent procedures, formats, and expectations for the creation, exchange, and management of design and construction information. These standards ensure effective collaboration, accuracy, and data interoperability throughout the project lifecycle. Project teams must adhere to these standards to maintain high-quality documentation.

2.2. Drawing Transmittal Requirements

Drawing files must meet these basic criteria or they will not be accepted.

- All "As-Built "drawings are to be marked in an obvious fashion with the text "As-Built" on both the CAD files and the PDF copies of the drawings.
- One set of "As-Built" information per project is required. Multiple contracts or building requisitions shall not be combined into one set of "As-Built" documentation.
- All computer files shall be submitted through the UoM online submission portal LUNR https://documents.lunr.app/#/login

Please refer to:

- "APPENDIX A DRAWINGS, AS-BUILTS & MANUALS FORMAT & SUBMISSION" document for detailed submission and format guidelines and
- "APPENDIX B LUNR SUBMISSION GUIDELINES" for instructions on submissions through the LUNR platform.

2.3. File Naming Convention

Standardised naming practices enhance clarity and organisation. Adhere to these conventions for effective project management:

- Adopt a standardised naming convention based on ISO 19650 for CAD and BIM files, folders, and components. See APPENDIX E FILE NAMING for the file naming breakdown.
- Maintain consistency in file names to ease file organisation and retrieval.
- Any deviations from APPENDIX E FILE NAMING must be approved by UoM.

3. BIM Standards and Guidelines

3.1. Design Software Compatibility and Versions

The choice of design software is pivotal to project success. To ensure effective collaboration and consistent outcomes, the following guidelines apply: APPENDIX E – FILE NAMING

- Utilise the designated design software versions that align with the University's standards.
- Ensure compatibility among project stakeholders using the same software and file versions.

Whenever CAD drawings are generated using software other than the designated CAD platform, they must be converted into the AutoCAD .dwg file format. This conversion is mandatory before transferring the drawings to UoM or as per the request of the UoM CAD Manager upon completing any project phase.

The responsibility for ensuring the accuracy and alignment with UoM CAD Drawing Standards during the translation process rests with the Contractor. Any expenses incurred due to inaccuracies or deficiencies in the translation or drafting will be the contractor's responsibility.

The final submissions of plots to UoM must be generated from the translated CAD file, rather than the original CAD file.

3.2. BIM File Format Requirements

Ensure accurate file formats for BIM data exchange and interoperability. Adhere to the following requirements for BIM files:

- All BIM files shall conform to industry-standard file formats such as .ifc or .rvt.
- Maintain a consistent drawing unit of one millimetre for BIM files.

3.3. BIM Model Delivery

For efficient BIM model delivery, adhere to these guidelines:

- Submit BIM files through the designated Lunr upload function or other approved platforms.
- Ensure compliance with the BIM model delivery requirements outlined in "Section 7: Model Production and Delivery.

Please refer to:

• "APPENDIX A - DRAWINGS, AS-BUILTS & MANUALS - FORMAT & SUBMISSION" document for detailed submission and format guidelines.

3.4. BIM Execution Plan Development and Implementation

For projects involving BIM, a BIM Execution Plan (BEP) is integral. It outlines project-specific details for coordination, modelling, and collaboration while aligning with university standards:

- Develop and implement a BEP for major projects.
- Address coordination, model development, information exchange, and collaboration in the BEP.
- Ensure the BEP complies with the University's overall CAD/BIM standards and project-specific requirements.

3.5. BIM Authoring Software for Major Projects

The choice of BIM authoring software significantly impacts project outcomes. To ensure effective collaboration and adherence to standards, follow these recommendations:

- Utilise specified BIM authoring software compatible with the University's BIM standards.
- Ensure the chosen software supports efficient collaboration and data sharing.
- Emphasise the requirement that 2D design elements must be connected to their corresponding 3D models using BIM-enabled software.
- Comply with guidelines for consistent and accurate data exchange between 2D and 3D representations.

3.6. BIM Model Coordination and Collaboration

Effective coordination of BIM models is crucial to avoid clashes and inconsistencies. Coordinate system and datum standards will be consistent with those specified in Section 3.9 (Geospatial and Coordinate Standards). Additionally, the following coordination practices will be followed:

- BIM models shall be aligned with the designated coordinate systems to ensure an accurate representation of building elements in their real-world context.
- Clash detection and resolution processes will be implemented to identify and rectify clashes between different disciplines' models.
- Models from various disciplines shall be integrated using coordination software to visualise and resolve any spatial conflicts.
- Clear communication protocols will be established to address coordination issues and ensure timely resolution.

3.7. Level of Development (LOD) Guidelines for BIM Projects

LOD guidelines define the degree of detail in BIM models. Establish consistent expectations:

- Define the LOD requirements for various elements of the BIM model at different project stages. See APPENDIX C LOD DEFINITIONS FOR BIM PROJECTS for the LOD breakdown.
- Address any clashes or conflicts identified during the coordination process.

3.8. Revision Control, Version Management, and Data Exchange

Effective data management is vital for project integrity. Adhere to these practices:

- Establish a robust revision control and version management system for both CAD and BIM models.
- Document changes and updates to track the evolution of models over time.
- Define data exchange formats and protocols for seamless sharing of CAD and BIM data.
- Ensure compatibility with industry standards to facilitate smooth data exchange.

3.9. Geospatial and Coordinate Standards

For all spatial data and feature surveys, the following coordinate systems and datums must be used:

- Map Grid Australia, Zone 55 (MGA 55) GDA 2020 for horizontal coordinates.
- Australian Height Datum (AHD) for vertical coordinates.

3.10. VBIS (Virtual Building Information System) Integration

VBIS is a critical component of the University of Melbourne's asset management strategy, and its integration with CAD and BIM standards is essential for effective project management. VBIS provides a classification system

for categorising assets based on their value and importance within the project. Please refer to APPENDIX H - UNIQUE ENTITY CODES - VBIS

- VBIS Codes for Asset Classification: Contractors and designers are required to assign VBIS codes to every asset within the project. These codes help prioritise and manage assets effectively throughout the project lifecycle.
- Integration with CAD and BIM Standards: VBIS integration ensures that asset data captured in CAD and BIM models align with asset classifications, enabling accurate reporting and decision-making.
- **Compliance:** Project teams and stakeholders are expected to comply with VBIS integration requirements as outlined in this section and ensure that VBIS codes are correctly assigned to project assets.

4. CAD Standards and Guidelines

4.1. CAD File Format Requirements

Accurate file formats are crucial for data exchange and interoperability. Ensure adherence to the following requirements for CAD files:

- CAD files shall be in AutoCAD 2020 (.dwg) file format or previous versions.
- One drawing unit = one millimetre
- Use standard installation fonts and line-type files provided by AutoCAD.
- Eliminate external references, ensuring that x-refs are bound or will not be accepted
- Files must be purged
- There shall be one AutoCAD file per completed drawing
- Multiple drawing sheets shall not be contained in one AutoCAD file
- Drawing entities shall be in model space
- All CAD files of building floor plans must have a BASE set to "0,0,0" and the floor plans drawn to the same grid coordinates on each CAD file
- All entities within the drawing file must have the colours and line types set to BYLAYER.

The documentation to be supplied MUST include:

- PS Number as provided by the project manager on each title sheet of the drawing
- Marked with "AS BUILT" on each title sheet of the drawing
- Marked with the correct DATE on each title sheet of the drawing
- Marked with correct REVISION numbers on each title sheet of the drawing.

All queries relating to the CAD Standards should be directed via the university-appointed project manager assigned to your project.

5. Asset Information Requirements

Asset Information Requirements (AIR) are essential components of the University of Melbourne's CAD and BIM standards. They define the specific information and data that must be captured, documented, and delivered as part of the project to ensure effective asset management throughout the building's lifecycle. Adherence to AIR standards is critical for maintaining the University's infrastructure and supporting efficient facilities management.

5.1. AIR Development and Implementation

Effective development and implementation of AIR are fundamental for the successful management of university assets. Follow these guidelines:

- Identify and Document Required Data: At the project initiation phase, identify and document the specific asset data and information required for each project. This may include details such as equipment specifications, maintenance schedules, warranties, and operational manuals.
- Align with University Standards: Ensure that the asset information aligns with the University's established VBIS data standards and classifications, making it consistent and compatible with existing systems. Refer to APPENDIX G ASSET INFORMATION TEMPLATE
- **Collaborate with Stakeholders**: Involve key stakeholders, including facilities managers, operations teams, and end-users, in the development of AIR to capture their requirements and expectations effectively.
- Integrate with BIM: If the project involves Building Information Modeling (BIM), integrate AIR requirements with the BIM model. Define how asset data will be linked to specific BIM components or objects.
- **Define Data Formats**: Specify the formats in which asset information should be delivered. Common formats include spreadsheets, PDFs, or industry-standard data formats (e.g., COBie for BIM projects).

5.2. Asset Data Delivery

Properly delivering asset data is crucial for smooth operations and maintenance. Adhere to the following guidelines:

- Include Asset Data in Deliverables: Ensure that all relevant asset information is included in the project deliverables. This may involve creating separate documentation for asset data or integrating it into existing project documents.
- **Clear Documentation**: Provide detailed documentation for each asset, including its location, specifications, maintenance requirements, and any relevant warranties or guarantees.
- **Delivery Methods**: Specify the methods and channels for delivering asset data. This may include electronic submission through a designated portal or the inclusion of physical documentation in project handover.
- **Training**: If necessary, include training materials or plans for facilities management and operations staff to effectively utilise the asset data provided.

5.3. Post-Project Responsibilities

Asset information management extends beyond project completion. Ensure that asset data remains up-to-date and accessible:

- **Maintenance and Updates**: Define procedures for updating asset information as equipment or systems change over time. Assign responsibility for ongoing data maintenance.
- Integration with Facilities Management Systems: Ensure that the asset data seamlessly integrates with the University's facilities management systems for efficient tracking and maintenance.
- Accessibility: Specify how authorized personnel can access asset information when needed, ensuring data is readily available for maintenance, inspections, and repairs.

• Audits and Compliance: Establish processes for auditing and verifying the accuracy and completeness of asset data to maintain compliance with University standards.

5.4. Documentation and Reporting

Accurate documentation and reporting are essential for monitoring asset performance and compliance. Implement the following:

- **Reporting Requirements**: Define regular reporting requirements for asset performance, maintenance schedules, and any critical issues that require attention.
- Key Performance Indicators (KPIs): Establish KPIs to assess the effectiveness of asset management and compliance with AIR.
- **Review and Improvement**: Periodically review and refine AIR based on lessons learned from previous projects and evolving University needs.

By integrating Asset Information Requirements into project workflows and ensuring the consistent delivery of asset data, University projects can contribute to more effective facilities management and enhanced infrastructure sustainability.

6. Project Information Requirements

The following table defines a standardised set of attributes required for each project asset. These attributes provide a consistent and comprehensive basis for documenting assets. They enable effective asset tracking, maintenance, and reporting by contractors and project stakeholders.

Attribute Name	Definition	Mandatory/Optional
Name	Name of asset. Can ideally be VBIS level 2, 3 or 4 classifications (product, sub-type or sub- sub-type).	Mandatory
Description	A short Description of the asset may include the type and size of the asset, or location within the space. Used to identify the asset.	Mandatory
Campus Code	Three-letter campus code.	Mandatory
Building Code	Three to four-letter code uniquely identifying building.	Mandatory
Floor Code	Code representing asset floor.	Mandatory
Room Code	Code representing space or room.	Mandatory
Layer	The specific layer within the University of Melbourne's defined layering system is where the asset is located (e.g., architectural, structural, electrical).	Optional
Space Type	A classification specifying the functional use or purpose of the space associated with the asset (e.g., office, laboratory, classroom).	Optional
Floor Capacity	The maximum permitted occupancy capacity for the space associated with the asset is crucial for occupancy permit and safety purposes.	Optional
Areas within Polylines (non-Reportable Areas Deducted)	Details regarding areas enclosed by specific polylines related to the asset, excluding non- reportable areas such as desks, furniture, or other elements that are not considered part of the asset.	Optional
Criticality	Rating between 1-5 classifying the criticality of the asset, 1 being most critical, 5 being least critical. If criticality is not defined, use VBIS mapping to look up standard asset criticality.	Optional
Latitude	Latitude of the asset.	Optional
Longitude	Longitude of asset.	Optional
Manufacturer	Asset manufacturer.	Optional

Model Number	Asset model number.	Optional
Warranty ID	Asset Warranty ID.	Optional
Asset ID	ID number uniquely identifying the asset.	Optional
Install Date	Asset installation date.	Optional
Replacement Cost	Cost to replace the asset.	Optional
Replacement Date	The date at which asset replacement is required. Defined by asset manufacturer or UoM guidelines.	Optional
Replacement Date Calculation	Replacement date calculation is to be used in the absence of a specific replacement date. Calculated from installation date and replacement period.	Optional
Replacement Period	The lifespan of the asset. The period between the installation date and the required replacement date.	Optional
Purchase Cost	Asset purchase cost.	Optional
Status	Operational status of the asset. Can be active, inactive, disposed, or lost	Optional
Comments	Comments can be observations upon asset audit or notes informing changes and updates. All comments should be dated.	Optional
Condition	Asset condition rating between 1-5, 5 being excellent condition and 1 being very poor condition. The TEFMA condition rating system is adopted.	Optional
Expected Condition	Expected asset condition rating between 1-5, 5 being excellent condition and 1 being very poor condition. The TEFMA condition rating system is adopted.	Optional
Cost Depreciated Value	Asset depreciated value. Difference between purchase cost and current estimated value.	Optional
Failure Index	Rating between 1-5 classifying the risk of asset failure, 1 being highest failure risk, 5 being least failure risk.	Optional
Design Life	The design life of the asset. Expected period before replacement is required. Defined by manufacturer.	Optional
Asset UoM Contact	First and last name of UoM staff member to contact regarding the asset.	Optional

Salvage Value	The current estimated value of the asset.	Optional
Serial Number	Asset serial number.	Optional
Barcode	Asset Barcode	Optional
Date Last Changed	The date at which the asset details were last changed. Usually date of the most recent asset audit.	Optional
Date Record Created	The date at which the asset was first recorded.	Optional
Warranty Period	Asset Warranty period.	Optional
VBIS Code	VBIS Code. Can be looked up using the VBIS classification table.	Optional

These common attributes should be integrated into CAD/BIM modelling and documentation practices. Contractors and project stakeholders are expected to adhere to these standards when providing asset information for the project.

For more detailed information and attribute requirements, please refer to the University of Melbourne's Asset Information Template provided in the Excel Spreadsheet.

6.1. Asset Register Deliverable

This EIR forms the basis for how each contractor involved in the project needs to fill out the 'asset register' deliverable in the Project Management Plan (PMP). Contractors are expected to provide accurate and complete information for each asset, adhering to the specified common attributes and metadata descriptions.

7. CAD Drawing and Model Production and Delivery

7.1. Drawing and Model Production Guidelines:

Producing CAD drawings and models is fundamental to effective project documentation. This section outlines guidelines and procedures to ensure high-quality production.

Drawing Production:

- Utilise designated design software versions aligned with University standards.
- Adhere to established CAD file format requirements for uniformity.
- Follow naming conventions for files and folders to streamline organisation.

Model Production:

- Develop CAD and BIM models by University standards.
- Maintain consistency in software versions and file formats.
- Utilise naming conventions for files, folders, and elements within the BIM model.
- Organise model components according to respective disciplines and systems.
- Implement a logical hierarchy for model elements to facilitate easy navigation and understanding.

7.2. Drawing and Model Coordination and Audits

Coordination and auditing are pivotal for accuracy and quality in CAD drawings and models.

Drawing Coordination:

- Collaborate with cross-disciplinary teams to ensure accurate design representation.
- Address potential clashes or conflicts that surfaced during coordination.

Model Coordination and Clash Detection:

- Conduct regular coordination meetings to review clash detection results.
- Utilise clash detection software to identify and resolve clashes.

Drawing and Model Audits and Verification:

- Conduct audits periodically to verify alignment with specifications.
- Document changes made during the audit process and update accordingly.

7.3. Drawing and Model Submission Process

Submitting CAD drawings and models is a crucial aspect of project delivery.

Drawing Submission:

- Utilise the University's designated online repository, LUNR.
- Ensure strict compliance with drawing transmittal requirements.

Model Submission:

- Prepare BIM models according to specified LOD and information delivery requirements.
- Use the designated submission platform to upload BIM models and documentation.

7.4. Integration of BIM in Projects

Integrating BIM principles enhances project efficiency across various scales.

Comprehensive BIM Implementation:

- For new buildings and major projects, involve key stakeholders in the BIM process.
- Include detailed information about all systems and components in BIM models.

BIM Integration in Small-Scale Projects and Fit-Outs:

- Utilise BIM for space planning, furniture layouts, and coordination.
- Apply BIM principles to manage information exchange and ensure accurate documentation.

8. Collaboration and Communication

Efficient collaboration and clear communication are fundamental to the success of projects. This section outlines the roles, responsibilities, data security, training, and management of the Common Data Environment (CDE) for effective collaboration among project stakeholders.

8.1. Roles and Responsibilities

Clearly defined roles and responsibilities are essential for streamlined collaboration. Project stakeholders must understand their roles and the contributions they bring to the project. Key roles include:

- Project Manager: Oversees the project's overall execution, coordinates stakeholders, and ensures adherence to standards.
- BIM Manager: Manages the implementation of BIM processes, coordinates BIM-related activities, and oversees model quality.
- Discipline Leads: Lead multidisciplinary teams and ensure design integration within their respective domains.
- Designers: Create design solutions based on project requirements and collaborate to achieve an integrated design.
- Contractors: Execute construction based on design documents and provide feedback for improvement.
- Facility Managers: Ensure a seamless transition from construction to operations, maintaining accurate facility information.

8.2. Data Security and Integrity

Maintaining data security and integrity is paramount to protect sensitive project information and ensure its accuracy. Key considerations include:

- Access Control: Implement appropriate access controls to limit data exposure to authorised personnel.
- Data Encryption: Apply encryption methods to safeguard data during transfer and storage.
- Data Backups: Regularly back up project data to prevent loss due to unexpected events.
- Change Management: Establish procedures for documenting and managing changes to project data.

8.3. Training and Competency

Ensuring that project team members have the necessary skills and knowledge is essential for effective collaboration. Training and competency initiatives include:

- Training Programs: Offer training in relevant software, tools, and BIM methodologies to enhance skills.
- Continuous Learning: Encourage ongoing professional development to keep up with industry advancements.
- Cross-Training: Promote cross-disciplinary training to foster multidisciplinary understanding.

8.4. Common Data Environment (CDE) Management

The Common Data Environment (CDE) serves as the central repository for project data and fosters collaboration. Key considerations include:

- Platform Selection: Choose an appropriate CDE platform that aligns with project needs.
- Data Structuring: Organise data within the CDE in a clear, consistent manner to facilitate easy retrieval.
- Version Control: Implement version control to track changes and maintain the accuracy of project data.
- Document Management: Ensure that all project-related documents are managed within the CDE for comprehensive access.

9. Survey Requirements

The following are special requirements for the Feature Survey and Underground Services documentation.

9.1. Feature Surveys

All plans shall be orientated with North to the top of the screen. Where a campus survey drawing is used there shall be NO rotation to the drawing.

All elements shall be surveyed in three coordinates (X, Y, Z) using only Map Grid Australia, Zone 55 (MGA 55) and Australian Height Datum (AHD).

Where available within the campus, a minimum of three benchmarks shall be used and tied to one another to check for any possible variation in the coordinates or RL. Where no guaranteed benchmarks exist in the campus area, the contractor must place at least three control points in the campus area by a qualified surveyor. The coordinates and mapped positions of these control points must be submitted with the final work. The control points must be placed in stable areas where there is little chance of them being destroyed.

Contours shall be displayed on all drawings at a suitable contour interval where applicable.

Trees of a height of one metre or more shall be surveyed. The position of the tree shall be surveyed as the middle of the trunk, measured at one metre above ground level.

Landscape features, including but not limited to paths, garden beds, outdoor infrastructure, hard landscape features, and soft landscape features, shall be accurately surveyed and represented in the drawings.

9.2. Underground Services

All constructed underground services shall be mapped on the campus survey plan, and their relationship to landscape features should be clearly indicated.

The investigation shall provide the following information for each service detected, regardless if part of the service is above ground or underground:

- The service location on plan together with an offset measurement from the nearest building line.
- Material of pipe or conduit.
- Depth or cover to pipe, conduit or cable.
- Diameter of pipe or conduit.
- The reduced level on pit covers.
- The depth and exact location of the pit, including the edges of the pits.
- The inverted level of pipes or conduits converging at a pit.
- Documentation on the type of pit, material and depth of the pit, type of lid, and state of repair of the pit.
- In the cases of an array of conduits, the surveyor shall provide information on how many conduits are empty and how many are being used.
- All isolation valves to buildings or other set areas, this is to include valves inside and outside buildings, and their relation to landscape features.
- Landscape features that may be affected by underground services should be clearly identified and documented.

The contractor shall also detail all service entity information as specified in Appendix I – 'Underground Services Survey Information'.

The final documentation for underground services shall be provided in two formats incorporating an AutoCAD Drawing file and an Excel Spreadsheet. To enable Excel information to be associated with the right service entity

on the CAD file, each Excel record will have a unique entity code. The format for this code is specified in Appendix J – 'Underground Services Unique Entity Codes'.

The pit number for pits shall be the same as the unique entity code as specified above.

All abbreviations used in the documentation of the underground services must be fully defined within the legend of all title sheets.

As an **exception** to Section 4.1, underground service Cad files shall comprise of external reference files. One AutoCAD CAD file for each service type surveyed.

The Space Management Team, University of Melbourne can provide records of known services through the LUNR repository upon request.

9.3. Landscape Features

The landscape survey shall include accurate data on the following landscape features:

- Outdoor infrastructure, including overhead and underground services, signage, bins, furniture, hydration stations, emergency phones, bike repair stations, poster poles, barbeques, compost bins, water features, pots, bollards, bird baths, irrigation assets, and more.
- Hard Landscape Features, such as paths, fence lines, gateways, furniture, retaining walls, kerb and channel, buildings (including entries), and other structures within the site boundary.
- Soft Landscape Features, including informal path edges, trees, garden beds, lawns, ponds, and all vegetation above 1 meter in height.
- Level Information to accurately represent the ground surface topography.

The survey should identify and differentiate various landscape features with appropriate symbols and layers for clear representation.

Landscape features shall be represented in AutoCAD drawings scaled at 1:1 meters and using EPSG: 7855 (GDA 2020 Zone 54/55). Electronic files larger than 8MB must be zipped for transmission.

The survey shall accurately capture all landscape features and their relationship to underground services, buildings, and other site elements.

Surveyors must conduct all necessary investigations, including Dial Before You Dig and electronic service detection, to accurately locate landscape features and their connections to underground services.

10. Reality Capture and Delivery

Reality capture solutions digitally capture existing asset or actual jobsite conditions. These solutions leverage various visual capture methods, including but not limited to, laser scans, photography, videography and drone-mounted cameras, to capture source data. Contractors must capture source data in alignment with the University of Melbourne reality capture data requirements, file formats and delivery documentation requirements defined in APPENDIX K – REALITY CAPTURE AND DELIVERY GUIDELINES, to align with CAD and BIM standards. All reality capture data captured by contractors is IP of and owned by University of Melbourne. Contractors must ensure complete accessibility of the captured data and upload it to University of Melbourne Lunr platform or as agreed with Space Management to allow University of Melbourne to keep a record of existing asset and job site conditions. Reality capture contractors must be qualified as defined in APPENDIX K – REALITY CAPTURE AND DELIVERY GUIDELINES.

APPENDIX A - DRAWINGS, AS-BUILTS & MANUALS -FORMAT & SUBMISSION

This appendix provides quick guidelines for format and submission for all stages of a project.

Drawings, As-builts & Manuals for Space Management

Quick Guidelines for Format & Submission

Submission timing, format, and purpose

Deliverable	Stage	Format	Purpose
Detailed Design Drawings Architectural floor plans with furniture layout	End of the Detailed Design stage within Implementation Planning	.pdf	For issuance of room numbers
Construction Drawings Architectural floor plans with furniture layout	End of the Procurement stage within Implementation Planning	.dwg & .pdf	For updating SIS
Contract: including Construction Drawings/ Models, Specifications, and Asset Registers	End of the Procurement stage within Implementation Planning	.pdf, .dwg, .rvt / .ifc as agreed, .xlsx	For space management planning and operations
As-Builts All architectural drawings (incl. joinery drawings) Structural drawings All services & all disciplines Site & feature surveys 7 U.G Services	Within 4 weeks of practical completion	.dwg & .pdf	Operational readiness
Manuals	Practical completion	.pdf	Operational readiness
Asset Register A comprehensive record of project assets. The Asset Register is linked to the University's Information Requirements within the CAD and BIM Standard which defines the necessary asset information and metadata requirements throughout the project lifecycle.	Throughout the project lifecycle (Implementation Planning stage)	.csv (excel)	Asset Management System Integration
Certificate of Occupancy, Building Permits and all Reports	Practical completion	.pdf	Operational Readiness
Site/building/project enabling documents, surveys and reports e.g. site condition & analysis reports, soil tests, site surveys, underground services surveys, precinct feasibility plans, master-plan feasibility & analysis reports, building condition reports, latent condition reports, reports on existing building services, landscape analysis, product specifications)	Throughout the project lifecycle (Implementation Planning stage)	.pdf	To inform ongoing management of the Estate

Sensitivity: General

Existing Conditions Document Including existing drawings and models	Before Concept Design	.ifc / .rvt or as agreed	Accurate depiction of existing conditions for design
Design Models	Detailed Design	.ifc / .rvt or as agreed	Visualisation and communication of design intent
Construction Models	End of Construction documentation (Implementation Planning stage)	.ifc / .rvt or as agreed	Support for construction planning and coordination
As-Built Models	Before Practical Completion	.ifc / .rvt or as agreed	Accurate record of completed construction

APPENDIX B – LUNR SUBMISSION GUIDELINES

All As-Built drawings, surveys, models, reports, certificates, permits and manuals must be submitted electronically through the LUNR repository (links below) as per instructions outlined in the LUNR help page.

LUNR Registration: <u>https://documents.lunr.app/#/register</u>

LUNR Login: https://documents.lunr.app/#/login

LUNR Help: <u>https://documents.lunr.app/#/help</u>

Further instructions for As-built documentation:

- Drafting conventions must be compliant with internationally accepted CAD drafting standards. The naming of layers must be self-explanatory or a legend provided in place.
- All external references (xrefs) must be bound.
- There must be only one sheet/drawing per DWG and PDF file.
- As-built documentation is to include all project specifications and schedules.

Further instructions for manuals

- Submit electronic manuals only. Printed manuals are no longer required.
- Manuals must be consolidated as one singular PDF per volume.
- Manuals must include a cover page (Building Request number, project title, building number, room number, year, et al) index and coherently sequenced contents as would a printed copy.
- Manuals are to provide concise descriptions, technical details, operation and maintenance instructions and schedules, commissioning records, log books, catalogues, principles of operation, method of operation and other information that will enable the ongoing operation and maintenance of the fabric, services, plant and equipment.

Roles and Responsibilities:

Role	Responsibility
Construction Team / Contractor	Responsible for uploading As-Built drawings, surveys, models, reports, certificates, permits, and manuals upon project completion.
Project Manager	Oversees the As-Built documentation submission process, ensuring that all documentation is complete, accurate, and complies with CAD and BIM standards.
Document Manager (If applicable)	Manages and maintains the As-Built Documents in the LUNR repository, ensuring proper organisation and accessibility for stakeholders.
Facility / Asset Manager	Responsible for owning and overseeing the ongoing operation and maintenance of the facility, ensuring that all necessary documents in the LUNR repository are available and up-to-date.

As-Built submission requirement

- As-Built submissions are a mandatory requirement and must be provided in PDF format, with each drawing as a separate PDF file, not bundled in zip files.
- These guidelines are essential to maintain a standardised and efficient digital asset management process at the University of Melbourne. All project teams are expected to adhere to these requirements for consistency and data integrity.

APPENDIX C – LOD DEFINITIONS FOR BIM PROJECTS

	LOD	Description
	100	The Model Element may be graphically represented in the Model with a symbol or other generic representation, but does not satisfy the requirements for LOD 200. Information related to the Model Element (i.e. cost per square foot, tonnage of HVAC, etc.) can be derived from other Model Elements.
Design Intent		BIMForum 2019: LOD 100 elements are not geometric representations. Examples are information attached to other model elements or symbols showing the existence of a component but not its shape, size, or precise location. Any information derived from LOD 100 elements must be considered approximate.
	200	The Model Element is graphically represented within the Model as a generic system, object, or assembly with approximate quantities, size, shape, location, and orientation. Non-graphic information may also be attached to the Model Element.
		BIMForum 2019: At this LOD elements are generic placeholders. They may be recognizable as the components they represent, or they may be volumes for space reservation. Any information derived from LOD 200 elements must be considered approximate.
	300	The Model Element is graphically represented within the Model as a specific system, object or assembly in terms of quantity, size, shape, location, and orientation. Non-graphic information may also be attached to the Model Element.
		BIMForum 2019: The quantity, size, shape, location, and orientation of the element as designed can be measured directly from the model without referring to non-modelled information such as notes or dimension call-outs. The project origin is defined, and the element is located accurately with respect to the project origin.
	350	The Model Element is graphically represented within the Model as a specific system, object, or assembly in terms of quantity, size, shape, location, orientation, and interfaces with other building systems. Non-graphic information may also be attached to the Model Element.
ction BIM		BIMForum 2019. Parts necessary for coordination of the element with nearby or attached elements are modelled. These parts will include such items as supports and connections. The quantity, size, shape, location, and orientation of the element as designed can be measured directly from the model without referring to non-modelled information such as notes or dimension call-outs.
	400	The Model Element is graphically represented within the Model as a specific system, object or assembly in terms of size, shape, location, quantity, and orientation with detailing, fabrication, assembly, and installation information. Non-graphic information may also be attached to the Model Element.
		BIMForum 2019. An LOD 400 element is modelled at sufficient detail and accuracy for fabrication of the represented component. The quantity, size, shape, location, and orientation of the element as designed can be measured directly from the model without referring to non-modelled information such as notes or dimension call-outs
	500	The Model Element is a field verified representation in terms of size, shape, location, quantity, and orientation. Non-graphic information may also be attached to the Model Elements.
Constru		BIMForum 2019. Since LOD 500 relates to field verification and is not an indication of progression to a higher level of model element geometry or non-graphic information, this Specification does not define or illustrate it.

APPENDIX D – INDUSTRY STANDARDS

Document	Description
ISO 19650 – 1: 2018	Organisation and digitisation of information about buildings and civil engineering works, including building information modelling (BIM) Information management.
	Information management using building information modelling Part 1: Concepts and principles
ISO 19650 – 2: 2018	Organisation and digitisation of information about buildings and civil engineering works, including building information modelling (BIM) Information management.
	Information management using building information modelling Part 2: Delivery phase of the assets
ISO 19650 – 3: 2020	Organisation and digitisation of information about buildings and civil engineering works, including building information modelling (BIM) Information management.
	Information management using building information modelling Part 3: Operational Phase of the assets
ISO 19650 – 4: 2022	Organisation and digitisation of information about buildings and civil engineering works, including building information modelling (BIM) Information management.
	Information management using building information modelling Part 4: Information exchange
ISO 19650 – 5: 2022	Organisation and digitisation of information about buildings and civil engineering works, including building information modelling (BIM) Information management.
	Information management using building information modelling Part 5: Security-minded approach to information management
Uniclass2015	The aim for this is to have a fully developed structured, indexed and standardised information classification system for all the industry to easily access in a common
	format which integrates with the BIM toolkit
BIMForum LOD Specification 2019	Level of Development (LOD) Specification and Commentary when using LOD to specify model development across project stages.
Victorian Digital Asset Strategy	Supporting the use of ISO 19650, COBie and Uniclass 2015 standards.
VBIS	VBIS is an industry standard asset categorisation system and unified communication syntax. VBIS is designed to facilitate the standardisation of asset categorisation particularly suited to unified searching of facilities management databases and linking a range of asset centric FM applications such as asset registers, service systems, life cycle analysis systems, O&M manuals, virtual reality systems and emerging cloud-based facilities.

APPENDIX E – FILE NAMING

Breakdown of the example file name 00001-UOM-BN162-G-DWG-A-0001[P01].dwg

APPENDIX G - ASSET INFORMATION TEMPLATE

This appendix documents the asset information required by the University of Melbourne.

A pro forma spreadsheet is available from the University of Melbourne Space Management Team before commencement of any work.

				SAVED			
SERVICE	ENTITY		D	WG	EXCEL		COMIVIENTS
Common attributes	All	Name			x	Text	Name of asset. Can ideally be VBIS level 2, 3 or 4 classifications (product, sub-type or sub-sub-type).
		Description			x	Text	Short Description of the asset may include type and size of asset, or location within the space. Used to identify the asset.
		Campus Code	x		x	Text-Three letter campus code.	Three letter campus code.
		Building Code	x		x	Text- Three letter campus code	Three to four letter code uniquely identifying building.
		Floor Code	x		x	Alphanumeric - 3-character code signifying floor	Code representing asset floor.
		Room Code	x		x	Alphanumeric - 4-character code signifying room	Code representing space or room.
		Criticality			x		Rating between 1-5 classifying the criticality of the asset, 1 being most critical, 5 being least critical. If criticality not defined, use VBIS mapping to look up standard asset criticality.
		Latitude			x	Numeric GPS co-ordinate	Latitude of asset.
		Longitude			x	Numeric GPS co-ordinate	Longitude of asset.
		Manufacturer			x	Text	Asset manufacturer.
		Model Number			x	Alphanumeric	Asset model number.
		Warranty ID			x	Alphanumeric	Asset Warranty ID.
		Asset ID			x	Alphanumeric	ID number uniquely identifying the asset.
		Install Date			x	DD_MM_YYYY	Asset installation date.

Replacement Cost	x	\$ AUD	Cost to replace asset.
Replacement Date	x	DD_MM_YYYY	Date at which asset replacement is required. Defined by asset manufacturer or UoM guidelines.
Replacement Date Calculation	x	DD_MM_YYYY	Replacement date calculation is to be used in the absence of a specific replacement date. Calculated from installation date and replacement period.
Replacement Period	x	Numeric	Lifespan of asset. Period between installation date and required replacement date.
Purchase Cost	х	\$ AUD	Asset purchase cost.
Status	x	Text	Operational status of asset. Can be active, inactive, disposed, or lost
Comments	x	Text	Comments can be observations upon asset audit or notes informing changes and updates. All comments should be dated.
Condition	x	Numeric	Asset condition rating between 1-5, 5 being excellent condition and 1 being very poor condition. The TEFMA condition rating system is adopted.
Expected Condition	x	Numeric	Expected asset condition rating between 1-5, 5 being excellent condition and 1 being very poor condition. The TEFMA condition rating system is adopted.
Cost Depreciated Value	x	\$ AUD	Asset depreciated value. Difference between purchase cost and current estimated value.
Failure Index	x	Numeric	Rating between 1-5 classifying the risk of asset failure, 1 being highest failure risk, 5 being least failure risk.
Design Life	x	Numeric	Design life of asset. Expected period before replacement is required. Defined by manufacturer.
Asset UoM Contact	x	Text	First and last name of UoM staff member to contact regarding the asset.
Salvage Value	x	\$ AUD	Current estimated value of asset.
Serial Number	x	Alphanumeric	Asset serial number.
Barcode	х	Alphanumeric	Asset Barcode

		Date Last Changed		x	DD_MM_YYYY	Date at which the asset details were last changed. Usually date of most recent asset audit.
		Date Record Created		x	DD_MM_YYYY	Date at which the asset was first recorded.
		Warranty Period		x	Numeric	Asset Warranty period.
		VBIS Code	x	х	Text	VBIS Code. Can be looked up using VBIS classification table.
Mains Water	Pipes	Material	x	х	Text, 10 characters	Detect material type and use standard code on drawing
		Date Installed		х	Date format, dd/mm/yyyy	
		Diameter	х	х	Integer, 6 characters	In millimetres
		Pressure		x	Integer, 10 characters	Assumed pressure in pipe
		Location	х			Shown accurately on drawing
		Offset	х			To nearest building line on drawing
		Depth to pipe	x	x	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	х		Real, 8 characters, 2 decimals	In meters
	Valves	Valve Type		x	Text, 64 characters	How to determine where valves are because of pipe material changes ie. Poly to copper.
		Date Installed		x	Date format, dd/mm/yyyy	Predict year if unknown
		Location	х			Is isolation valve inside buildings our outside
		Offset	х			To nearest building line on drawing
	Pumps	Pump Type		x	Text, 64 characters	
		Offset	х			To nearest building line on drawing
	Water Meter	Meter Type		х	Text, 64 characters	Describe make and type of meter
		Date Installed		х	Date format, dd/mm/yyyy	Predict year if unknown
		Location	х			
		Offset	x			To nearest building line on drawing
Stormwater	Pipes	Material	x	x	Text, 64 characters	Detect material type and use standard code on drawing

		Direction of Flow	x			Arrow on drawing
		Date Installed		x	Date format, dd/mm/yyyy	Predict year if unknown
		Diameter	х	х	Integer, 6 characters	In millimetres
		Location	x			Do not locate minor stormwater down pipes
		Offset	x			To nearest building line on drawing
		Depth to pipe	x	x	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	х		Real, 8 characters, 2 decimals	In meters
		IL at pits	x	x	Real, 8 characters, 2 decimals	In meters
Fire Service	Pipes	Material	x	х	Text, 64 characters	
		Date Installed		х	Date format, dd/mm/yyyy	
		Diameter	х	х	Integer, 6 characters	In millimetres
		Location	х			Is isolation valve inside buildings our outside
		Offset	x			To nearest building line on drawing
		RL at exposed points	x		Real, 8 characters, 2 decimals	In meters
		Depth to pipe	x		Real, 8 characters, 2 decimals	In meters
	Hydrant	Date Installed		х	Date format, dd/mm/yyyy	
		Diameter		x	Integer, 6 characters	In millimetres
Electricity	Cable	LocationHigh/Low Voltage/Stree tLighting	x	x	Text, 2 characters (HV, LV, ST)	Shown accurately on drawing
		Depth	х	x	Integer, 6 characters	In meters
		Voltage rating	х	x	Integer, 6 characters	
		Туре		х	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
	Conduits	Array arrangement	Х			Show diagram of array as per standards

		Depth	х	х	Real, 8 characters, 2 decimals	In meters
		Used/Unused	x			
		Туре		x	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Location	х			Shown accurately on drawing
		Offset	х			To nearest building line on drawing
Gas	Pipes	High/Low pressure	x	x	Text, 2 characters (LP, HP)	
		Depth	x	x	Real, 8 characters, 2 decimals	In meters
		Туре		х	Text, 64 characters	In meters
		Date Installed		x	Date format, dd/mm/yyyy	
		Diameter	х	х	Integer, 6 characters	In millimetres
	Gas Regulator	Regulator Type		x	Text, 64 characters	
		Regulator Pressure		х	Integer, 6 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
		Location	х			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
Valves		Valve Type	x	Integer, 6 characters	Gate or Sluice	Is isolation valve inside buildings our outside
		Date Installed	х	Date format, dd/mm/yyyy		
		Location	х			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
Telephone	Cable	Location	x			Shown accurately on drawing
		Depth	x	x	Real, 8 characters, 2 decimals	In meters

		Туре		х	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Offset	х			To nearest building line on drawing
		Number of pairs	х	х	Integer, 6 characters	
Security	Devices	Type of device	х	x		
		Location				Shown accurately on drawing
	Cable	Location	х			Shown accurately on drawing
		Туре		х	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Depth	x		Real, 8 characters, 2 decimals	In meters
		Offset	x			
Fibre Optic	Cable	Location	x			Shown accurately on drawing
		Туре		x	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Depth	x		Real, 8 characters, 2 decimals	In meters
			v			
		Offset	x			To nearest building line on drawing
Sewer		Material	x	x	Text, 10 characters	To nearest building line on drawing
Sewer		Material Direction of Flow	x x x	X	Text, 10 characters	To nearest building line on drawing Arrow on drawing
Sewer		Material Direction of Flow Date Installed	x x x	x x	Text, 10 characters Integer, 6 characters	To nearest building line on drawing Arrow on drawing
Sewer		Material Direction of Flow Date Installed Diameter	x x x x	x x x	Text, 10 characters Integer, 6 characters	To nearest building line on drawing Arrow on drawing In millimetres
Sewer		Material Direction of Flow Date Installed Diameter Location	x x x x x x	x x x	Text, 10 characters Integer, 6 characters	To nearest building line on drawing Arrow on drawing In millimetres Shown accurately on drawing

		Depth to pipe	x	x	Real, 8 characters, 2 decimals	In meters
		IL at pits	x	x	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	x			In meters
Hot Water	Pipes	Material	x			
		Date Installed	x	x		
		Diameter	x	x		In millimetres
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
		Depth to pipe	x	x	Real, 8 characters, 2 decimals	In meters
		Level at exposed points	x			In meters
All Services	Pits	Lid Type		x	Text, 64 characters	
		Unique Pit Number	x	x	Text, 10 characters	Refer to CAD standards for pit numbering standard
		Condition of pit		x	Text, 64 characters	
		IL of converging conduits or pipes	x			In meters
		RL of top of pit	x	x	Real, 8 characters, 2 decimals	In meters
		Pit depth		x	Real, 8 characters, 2 decimals	In meters
Refrigeration	Freezers	Refrigerant Type		x	Text, 10 characters	
Landscape	Landscape Assets	Furniture Type		x	Text, 10 characters	

Furniture Material		x	Text, 10 characters
Layer	x		Text, 10 characters

APPENDIX H - UNIQUE ENTITY CODES - VBIS

All underground entities surveyed will be supplied with a unique entity code. This code will be tabled in an Excel spreadsheet with the information as requested in APPENDIX C–LOD DEFINITIONS FOR BIM PROJECTS. The unique entity code shall also be noted on the drawing next to the entity concerned and be bounded by a polyline.

The format of this code is made up of two sub-parts. The first sub-part is a prefix representing the underground service of the entity. A list of these prefixes is documented below. The second sub-part is a unique five-digit number that will be supplied to the entity sequentially.

VBIS CODE PREFIX	DESCRIPTION
AC	Acoustics
cv	Civil
со	Communications
EL	Electrical Lighting
EP	Electrical Power
FD	Fire Detection
FR	Fire Resistance
FS	Fire Suppression
FFE	Furniture, Fittings & Equipment
НҮ	Hydraulics
ІТ	Information Technology
KE	Kitchen Equipment
LS	Landscape
ME	Mechanical
MLE	Medical & Laboratory Equipment
MG	Medical Gases

APPENDIX I - UNDERGROUND SERVICES SURVEY INFORMATION

This appendix documents the underground service entities that are required, by the University of Melbourne, to be surveyed. It also specifies the types of information required for each underground service.

A pro forma spreadsheet is available from the University of Melbourne Space Management Team prior to commencement of any work.

UNDERGROUND SERVICES INFORMATION REQUIREMENTS

	ENTITY		SA	VED		COMMENTS
SERVICE	Liviiii		DWG EXCEL			COMMENTS
Mains Water	Pipes	Material	x	x	Text, 10 characters	Detect material type and use standard code on drawing
		Date Installed		x	Date format, dd/mm/yyyy	
		Diameter	x	x	Integer, 6 characters	In millimetres
		Pressure		х	Integer, 10 characters	Assumed pressure in pipe
		Location	х			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
		Depth to pipe	x	х	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	х		Real, 8 characters, 2 decimals	In meters
	Valves	Valve Type		х	Text, 64 characters	How to determine where valves are because of pipe material changes ie. Poly to copper.
		Date Installed		х	Date format, dd/mm/yyyy	Predict year if unknown
		Location	x			Is isolation valve inside buildings our outside
		Offset	x			To nearest building line on drawing
	Water Meter	Meter Type		х	Text, 64 characters	Describe make and type of meter

SERVICE	ENTITY		SA	VED		COMMENTS
SERVICE	LINITI		DWG	EXCEL		COMMENTS
		Date Installed	_	x	Date format, dd/mm/yyyy	Predict year if unknown
		Location	х			
		Offset	x			To nearest building line on drawing
Stormwater	Pipes	Material	х	х	Text, 64 characters	Detect material type and use standard code on drawing
		Direction of Flow	х			Arrow on drawing
		Date Installed		х	Date format, dd/mm/yyyy	Predict year if unknown
		Diameter	х	х	Integer, 6 characters	In millimetres
		Location	x			Do not locate minor stormwater down pipes
		Offset	х			To nearest building line on drawing
		Depth to pipe	х	х	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	x		Real, 8 characters, 2 decimals	In meters
		IL at pits	х	х	Real, 8 characters, 2 decimals	In meters
Fire Service	Pipes	Material	x	х	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Diameter	х	х	Integer, 6 characters	In millimetres

SERVICE	FNTITY		SA	VED		COMMENTS
SERVICE	LINITI	INFORMATION	DWG	EXCEL		COMMENTS
		Location	x			Is isolation valve inside buildings our outside
		Offset	x			To nearest building line on drawing
		RL at exposed points	х		Real, 8 characters, 2 decimals	In meters
		Depth to pipe	Х		Real, 8 characters, 2 decimals	In meters
	Hydrant	Date Installed		x	Date format, dd/mm/yyyy	
		Diameter		х	Integer, 6 characters	In millimetres
Electricity	Cable	Location High/Low Voltage/Street Lighting	x x	x	Text, 2 characters (HV, LV, ST)	Shown accurately on drawing
		Depth	X	Х	Integer, 6 characters	In meters
		Voltage rating	x	х	Integer, 6 characters	
		Туре		х	Text, 64 characters	
		Date Installed		х	Date format, dd/mm/yyyy	
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing

SERVICE	FNTITY		SA	VED		COMMENTS
SERVICE	2.0000		DWG	EXCEL		COMMENTS
	Conduits	Array arrangement	х			Show diagram of array as per standards
		Depth	х	Х	Real, 8 characters, 2 decimals	In meters
		Used/Unused	х			
		Туре		X	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Location	х			Shown accurately on drawing
		Offset	х			To nearest building line on drawing
Gas	Pipes	High/Low pressure	х	Х	Text, 2 characters (LP, HP)	
		Depth	x	Х	Real, 8 characters, 2 decimals	In meters
		Туре		X	Text, 64 characters	In meters
		Date Installed		X	Date format, dd/mm/yyyy	
		Diameter	x	x	Integer, 6 characters	In millimetres
		Location	x			Is isolation valve inside buildings our outside
	Valves	Valve Type		x	Integer, 6 characters	Gate or Sluice
		Date Installed		x	Date format, dd/mm/yyyy	

SERVICE	FNTITY		SA	VED	FIELD TYPE	COMMENTS
SERVICE	Liviti		DWG	EXCEL		COMMENTS
		Location	х			Shown accurately on drawing
		Offset	rt X			To nearest building line on drawing
	Gas Meter	Meter Type		x	Text, 64 characters	
		Date Installed	X Date format, dd/mm/yyyy		Date format, dd/mm/yyyy	
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
	Gas Regulator	Regulator Type		x	Text, 64 characters	
		Regulator Pressure		x	Integer, 6 characters	
		Date Installed		x	Date format, dd/mm/yyyy	
		Location	x			Shown accurately on drawing
		Offset	x			To nearest building line on drawing
Telephone	Cable	Location	x			Shown accurately on drawing
		Depth	x	X	Real, 8 characters, 2 decimals	In meters
		Туре		x	Text, 64 characters	
		Date Installed		x	Date format, dd/mm/yyyy	

SERVICE	ENTITY		SAVED			COMMENTS
SERVICE	Littin	MOMMATION	DWG	EXCEL		COMMENTS
		Offset	x			To nearest building line on drawing
		Number of pairs	x	X	Integer, 6 characters	
Security	Devices	Type of device	x	X		
		Location				Shown accurately on drawing
	Cable	Location	x			Shown accurately on drawing
		Туре		X	Text, 64 characters	
		Date Installed		X	Date format, dd/mm/yyyy	
		Depth	x		Real, 8 characters, 2 decimals	In meters
		Offset	x			
Fibre Optic	Cable	Location	x			Shown accurately on drawing
		Туре		x	Text, 64 characters	
		Date Installed		х	Date format, dd/mm/yyyy	
		Depth	x		Real, 8 characters, 2 decimals	In meters
		Offset	x			To nearest building line on drawing
Sewer		Material	х	х	Text, 10 characters	

SERVICE	FNTITY		SAVED		FIFLD TYPF	COMMENTS
SERVICE	LINITI		DWG	EXCEL		COMMENTS
		Direction of Flow	х			Arrow on drawing
		Date Installed		x	Integer, 6 characters	
		Diameter	х	x		In millimetres
		Location	х			Shown accurately on drawing
		Offset	х			To nearest building line on drawing
		Depth to pipe	Х	x	Real, 8 characters, 2 decimals	In meters
		IL at pits	х	х	Real, 8 characters, 2 decimals	In meters
		RL at exposed points	x			In meters
Hot Water	Pipes	Material	х			
		Date Installed	X	X		
		Diameter	Х	X		In millimetres
		Location	х			Shown accurately on drawing
		Offset	х			To nearest building line on drawing
		Depth to pipe	х	х	Real, 8 characters, 2 decimals	In meters

SERVICE	FNTITY	INFORMATION	SAVED		FIFI D TYPF	COMMENTS
02.11102			DWG	EXCEL		
		Level at exposed points	х			In meters
All Services	Pits	Lid Type		x	Text, 64 characters	
		Unique Pit Number	x	x	Text, 10 characters	Refer to CAD standards for pit numbering standard
		Condition of pit		X	Text, 64 characters	
		IL of converging conduits or pipes	x			In meters
		RL of top of pit	x	х	Real, 8 characters, 2 decimals	In meters
		Pit depth		x	Real, 8 characters, 2 decimals	In meters

APPENDIX J - UNDERGROUND SERVICES UNIQUE ENTITY CODES

All underground entities surveyed will be supplied with a unique entity code. This code will be tabled in an Excel spreadsheet with the information as requested in Appendix C. The unique entity code shall also be noted on the drawing next to the entity concerned and be bounded by a polyline.

The format of this code is made up of two sub parts. The first sub part is a prefix representing the underground service the entity. A list of these prefixes is documented below. The second sub part is a unique five digit number that will be supplied to entity sequentially.

CODE PREFIX	DESCRIPTION
CFS	CAMPUS FIRE SERVICE
СОМ	COMPUTERS
CSS	CENTRAL SUPERVISORY SYSTEM
СТD	COOLING TOWER DISCHARGE
EGC	EMERGENCY GENERATOR CONNECTION
GAS	GAS MAINS
HV	HIGH VOLTAGE ELECTRICITY
HW	HOT WATER
LV	LOW VOLTAGE ELECTRICITY
MW	MAINS WATER
S	SEWER
SL	STREET LIGHTING
SP	STEAM PIPES
sw	STORM WATER
т	TELECOMMUNICATIONS
UGE	GENERAL ELECTRICAL

Following is an example of table information supplied with a drawing.

The associated Excel spreadsheet;

STORM WATER

Pipes

Entity Code	Material	<u>Date</u>	Dia	<u>Depth</u>
SW01265	RCP	1965	300	1.45
SW1267	RCP	1965	300	1.5
SW01269	RCP	1980	300	1.3
SW01271	RCP	1980	300	1.35
SW01272	VCP	1955	225	1.45
SW01273	VCP	1956	225	1.05
SW01273	RCP	1985	150	0.9

Entity Coo	le <u>Date</u>	<u>Cover Type</u>	<u>Conditio</u>	n <u>RL Top</u>	<u>Depth</u>
SW-P0126	56 1965	35mm Gatic	Good	4.55	1.70
SW-P0126	5 8 1980	Concrete Lid	Poor	4.56	1.5
SW-P0127	70 1980	35mm Gatic	Fair	4.56	1.6
SW-P0127	74 1985	Gatic SEP	Good	4.40	1.35

APPENDIX K – REALITY CAPTURE AND DELIVERY GUIDELINES

1 Data Requirements

- A. Photographs:
 - a. 360 degree spherical imagery

360 imagery to be captured by appropriate 360 degree cameras or laser scanners with 360 degree imagery capability. Image locations to be between 5m – 10m apart with smaller distances for tighter internal spaces. Deliverable must allow for online indexing and navigation interface between capture locations.

b. Photogrammetry (ground based)

Photographs/ imagery capture for ground based photogrammetry to be taken with inspection grade high- resolution digital photography. Images must be taken with a minimum 75% overlap. Hardware must meet the following minimum specifications:

- Full frame sensor (35mm)
- 21 megapixel resolution
- Mechanical shutter
- Min. 16mm wide angle lens

For outdoor photogrammetry, ideally overcast conditions with even lighting and sufficient Lux levels.

c. Photogrammetry (Aerial)

Photographs/ imagery capture for aerial based photogrammetry or mapping must be taken with a CASA certified UAV and flown by a RePL which hold all appropriate licenses and certifications. The minimum quality requirements of the imagery is 1.5cm GSD or 1.5cm/ Px. Ideally flown in overcast conditions with even lighting and sufficient lux levels.

B. Videos:

Contractor must be capable of all below video documentation requirements. Contractor must be able to demonstrate these capabilities by presenting exemplar documentation upon request. Video documentation must be recorded in no less than 1920x1080p HD video format.

- Documentation of facilities management, operations and maintenance training presentations/demonstrations for key equipment and systems.
- b. Documentation of any other key construction inspections, milestones or events as required by client.
- c. Documentation of live site conditions at a point in time specified by the client, captured via Contractor-piloted UAV.
- C. Point Clouds:

Perform LiDAR capture of current project conditions, as required. Scan positions to have sufficient overlap (min. 30%) and/or use of scanning targets to assist with alignment and quality control. Geolocation to be used where applicable and available. 3D Laser scanner must be integrated with HDR spherical imaging system and hardware must meet the following minimum specifications:

- 15 Mpixel 3-camera system, 150Mpx full dome capture, HDR, LED flash Calibrated spherical image, 360° x 300°
- 3D point accuracy: 5mm@10m, 8mm@ 20m
- Range Min 0.5m Max 60m

2 Delivery Documentation Requirements

- A. Photography and Video documentation:
 - a. Indexing and navigation system will utilize actual construction drawings or equivalent as the basis for an interactive on-line interface. For all photographic documentation referenced herein, indexing and navigation must be organized by both time (date-stamped) and location throughout the Project. Access interface will include multiple active projects per user, if applicable, and recent documentation activity summaries per project allowing for direct access to project plans and shoots from summary display. Documentation activity can be queried by date range via activity searches.

- b. Documentation will combine indexing and navigation system with inspection grade high-resolution digital photography designed to capture actual conditions throughout construction and at critical milestones. Documentation will be accessible on-line within 24 hours after each shoot, through the use of an internet connection. Documentation will allow for multiple user access simultaneously, on-line. Access shall adhere to industry standards for information security and protection of data. Multi-tiered access levels shall be achievable through use of individual passwords, if applicable. Users will be able to identify other authorized users on the project.
- c. Online interface will allow users to comment (privately or publicly) on images, shoots, and projects and to create customizable tags that can be reviewed through integrated reporting functionality. These images and reports must be made available through PDF and a standalone link. All images or reports will be identified by time, date, location, and include associated comments that can be archived indefinitely. The administrator can restrict commenting functions. Commenting permissions, per user, can be set to either (1) read/write, (2) read only, or (3) no read/no write permissions at the option of the administrator.
- B. 3D mesh model and mapping documentation:
 - a. 3D mesh model and orthomaps from the photogrammetry workflow to be provided on a platform that allows clients to be able to instantly view, annotate and measure distance, elevation, area, and volumetric quantities.
 - b. File exports must be availabe for the following data:
 - PDF summary reports of measurements and quantities
 - Orthomosiac imagery (Geotiff)
 - Contour elevation files (DXF/ SHP/ DWG)
 - 3D Mesh models (OBJ, FBX, 3MX, GLB)
- C. Point Cloud documentation:
 - a. Post processing to include scan registration, cleanup and integration into measurable 360degree walk-through to allow for simultaneous viewing of walk-through & current location as indexed to architectural plans. Any points within the point cloud that exceeds 30 metres from scanner position to be removed as with data picked up from moving objects, reflections, artifacts etc.
 - b. Offline point cloud deliverables must be provided in the following file types: .LGS, .RCP/.RCS, .e57.
 - c. 360 imagery taken from the scanner must be provided in the following file types: .jpg, .png.
 - d. Scan registration report must be provided as a PDF outlining alignment results and deviations.

3 Contractor Qualifications

- A. The Contractor must have a minimum of five years' experience providing expert visual project documentation to the Construction and Facilities Management Industries, using an advanced software platform, indexing system and navigation interface.
- B. The Contractor's portfolio of completed documentation must include projects representative of the current project's type, size, duration, and complexity, with at least five demonstrable examples completed within the last 2 years.
- C. The Contractor must directly employ field personnel able to demonstrate proficiency in execution of photographic and video documentation for construction projects, including reality capture, configuration of webcam systems and use/knowledge of associated equipment.
- D. Field personnel shall be OSHA certified, if applicable per the project specific safety programs. Coordination with project teams will be accomplished through a designated representative onsite at the project, typically a superintendent or a project manager. Contractor will also attend OAC meetings. Contractor's operations team will provide regular updates regarding the status of the documentation, including completed elements of the documentation, the availability of recent documentation online and anticipated future shoot dates.
- E. The Contractor must directly employ field personnel which hold all licenses and certifications required by the applicable regulatory authority for commercial UAV piloting.
- F. The Contractor must be able to respond to site visit requests with qualified personnel within 48 hours of notice.

G. The Contractor must abide to all local and federal laws including the Privacy and Data Protection Act 2014(Vic)(PDP Act), and to the best of their abilitiy, avoid capturing personable identifiable data such as appearances, number plates, personal documentation. Any such data captured will have to be anonymised or removed in any deliverables.